Wellbore-Stability Study for the SAFOD Borehole Through the San Andreas Fault

نویسنده

  • Pijush Paul
چکیده

This paper presents a wellbore-stability study of the San Andreas Fault Observatory at Depth (SAFOD) research borehole located near Parkfield, California, USA. In the summer of 2005, the SAFOD borehole was drilled successfully through the active trace of the San Andreas Fault (SAF) in an area characterized by fault creep and frequent microearthquakes. In this study, we report how the analysis of wellbore failures in the upper part of the hole, geophysical logs, and a model for stress gradients in the vicinity of the fault were used to estimate the mud weights required to drill through the fault successfully. Because logging-while-drilling (LWD) acoustic caliper data and real-time hole-volume calculations both showed that relatively little failure occurred while drilling through the SAF, the predicted mud weight was successful in drilling a stable borehole. However, a six-arm caliper log, run after drilling was completed, indicates that there was deterioration of the borehole with time, which appears to be caused by fluid penetration around the borehole. The LWD-resistivity measurements show that essentially no fluid penetration occurred as the hole was being drilled. Because of this, the mud weight used was capable of maintaining a stable wellbore. However, the resistivity data obtained after drilling show appreciable fluid penetration with time, thus negating the effectiveness of the mud weight and leading to time-dependent wellbore failure. Using finite-element modeling (FEM), we show that mud penetration into the fractured medium around the borehole causes failure with time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paleomagnetic reorientation of San Andreas Fault Observatory at Depth (SAFOD) core

[1] We present a protocol for using paleomagnetic analysis to determine the absolute orientation of core recovered from the SAFOD borehole. Our approach is based on determining the direction of the primary remanent magnetization of a spot core recovered from the Great Valley Sequence during SAFOD Phase 2 and comparing its direction to the expected reference field direction for the Late Cretaceo...

متن کامل

Frictional behavior of materials in the 3D SAFOD volume

[1] We report on frictional properties of rocks within the 3-D crustal volume surrounding the San Andreas Fault Observatory at Depth (SAFOD). Samples include lithologies adjacent to the San Andreas Fault (SAF) in the subsurface, SAFOD borehole rocks, and synthetic fault gouge composed of talc, serpentinite, and quartz. Granodiorite, arkosic sandstone, and siltstone samples from the SAFOD boreho...

متن کامل

Analysis and Modeling of the Wavefield Generated by Explosions at the San Andreas Fault Observatory at Depth

Surface array and deep borehole recordings of chemical explosions in the near-source (0-20 km) region are studied to better understand the radiated wavefield, and in particular the generation of S-waves by explosions. More than 120 explosions have been conducted in the immediate vicinity of the San Andreas Fault Observatory at Depth (SAFOD) between 2002 and 2006 as part of a comprehensive progr...

متن کامل

Electrical resistivity structure at the SAFOD site from magnetotelluric exploration

[1] The magnetotelluric dataset collected on the San Andreas Fault at Parkfield has been re-analyzed using superior inversion algorithms that have been developed in recent years. A combination of constrained inversion, forward modeling and synthetic inversion studies are used, and show that at the SAFOD site, the low resistivity fault zone extends to a depth of 2–3 km. An extended zone of low r...

متن کامل

Broadside interferometric and reverse-time imaging of the San Andreas Fault at depth

The San Andreas Fault Observatory at Depth provides the most comprehensive set of data on the structure and dynamics of the San Andreas fault. We use two independent experiments recorded by the seismometer arrays of the SAFOD Pilot and Main Holes to resolve the localized structure of the San Andreas fault zone and of an intermediate fault zone at depth. From Pilot Hole recordings of the drillin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008